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Swirling flow of viscoelastic fluids.
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A torsionally driven cavity has been used to examine the influence of elasticity
on the swirling flow of constant-viscosity elastic liquids (Boger fluids). A wealth
of phenomena is observed as the degree of inertia, elasticity and viscous forces
are varied by using a range of low- to high-viscosity flexible polyacrylamide Boger
fluids and a semi-rigid xanthan gum Boger fluid. As the inertia is decreased and
elasticity increased by using polyacrylamide Boger fluids, the circulation rates for
a ‘Newtonian-like’ secondary flow decreases until flow reversal occurs owing to the
increasing magnitude of the primary normal stress difference. For each polyacrylamide
fluid, the flow becomes highly unstable at a critical combination of Reynolds number
and Weissenberg number resulting in a new time-dependent elastic instability. Each
fluid is characterized by a dimensionless elasticity number and a correlation with
Reynolds number is found for the occurrence of the instability. In the elasticity
dominated flow of the polyacrylamide Boger fluids, the instability disrupts the flow
dramatically and causes an increase in the peak axial velocity along the central axis
by as much as 400%. In this case, the core vortex spirals with the primary motion
of fluid and is observed in some cases at Reynolds numbers much less than unity.
Elastic ‘reverse’ flow is observed for the xanthan gum Boger fluid at high Weissenberg
number. As the Weissenberg number decreases, and Reynolds number increases,
counter-rotating vortices flowing in the inertial direction form on the rotating lid.
The peak axial velocity decreases for the xanthan gum Boger fluid with decreasing
Weissenberg number. In addition, several constitutive models are used to describe
accurately the rheological properties of the fluids used in this work in shear and
extensional flow. This experimental investigation of a complex three-dimensional flow
using well-characterized fluids provides the information necessary for the validation
of non-Newtonian constitutive models through numerical analysis of the torsionally
driven cavity flow.

1. Introduction
The confined swirling flow of elastic fluids in an enclosed cylindrical vessel with

a rotating bottom lid provides a complex flow field in a simple geometry, which is
suitable for comparison with numerical models. Also, swirling flow of non-Newtonian
fluids is common throughout process engineering applications and, hence, an under-
standing of the behaviour of elastic fluids in a well-defined swirling flow situation is
highly beneficial. The ability to predict the behaviour of the flow of elastic liquids
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will enable the validation of non-Newtonian constitutive models and act as precursor
to solving more difficult geometries involving swirl. The previous work on confined
swirling flow was reviewed in Part 1 (Stokes et al. 2001) and will not be repeated
here.

The previous experimental investigations into confined swirling flow of non-
Newtonian fluids have been conducted using shear-thinning fluids with varying
degrees of elasticity (Hill 1972; Böhme, Rubart & Stenger 1992; Day et al. 1996;
Wünshch & Böhme 1996; Escudier & Cullen 1997). The success of numerical inves-
tigations to predict the flow behaviour of non-Newtonian fluids in confined swirling
flow has been limited, such that few of the experimental observations have been
predicted to occur (Kramer & Johnson 1972; Nirschl & Stewart 1984; Chiao &
Chang 1990; Böhme et al. 1992; Escudier & Cullen 1996; Wünshch & Böhme 1996).
This was, in part, due to the difficulty of discriminating between effects on the
flow kinematics owing to shear thinning and those associated with elasticity in the
experimental results. Therefore, there is a need for experimental data using well-
characterized constant-viscosity elastic fluids, i.e. Boger fluids (Boger 1977/78), to
remove any effects due to shear thinning. Low-viscosity Boger fluids are used in Part
1 to examine the influence of up to 75 p.p.m. of polymer (polyacrylamide or xanthan
gum) in an inertia-dominated flow where axisymmetric vortex breakdown is present
for Newtonian fluids. Part 2 examines experimentally the swirling flow of medium- to
high-viscosity elastic fluids for conditions ranging from where inertia is dominating
to where elasticity is dominant across the flow field.

2. Experimental
A detailed description of the experimental set-up and apparatus may be found in

Part 1.

2.1. Experimental set-up and apparatus

The experimental apparatus consisted of an acrylic cylinder, located in a rectangular
acrylic water bath, with a rotating stainless steel base and stationary top lid. Laser
flow visualization was used to observe streamlines by injecting fluorescent dye or
particles into the flow cell with a laser light sheet. Particle image velocimetry (PIV)
was also used to map the velocity flow field in a given vertical plane. The technique
used multiple-exposure photography with flourescent particles as tracers, and digital
autocorrelation techniques for data processing.

The characteristic dimensionless numbers defined previously in Part 1 are the
Reynolds number (Re = ρ2πΩR2/η), Weissenberg number (We = λM2πΩ), elasticity
number (El = We/Re = λMη/ρR

2), and aspect ratio (H/R). The characteristic time
of the fluid is taken as the Maxwell relaxation time (λM = Ψ1/2η) where Ψ1 is the
primary normal stress coefficient.

2.2. Test fluids

The polymers used in the test fluids were dilute concentrations of Separan AP30 and
MG500 polyacrylamides (PAA) and a semi-dilute concentration of Koltrol xanthan
gum (XG). Their corresponding molecular weights were measured as 3.1 million, 3.6
million and 6.3 million, respectively (Stokes 1998; Stokes et al. 2001). The viscous
Newtonian solvents used were either glycerol or 43◦Be wheat syrup (supplied by
Weston Bioproducts) mixed with water. Sodium chloride was also added to some
solutions. The polymer concentration, solvent viscosity, and solvent quality were all
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Polymer Viscous solvent Water Salt (NaCl)

Label Type Wt% Type Wt% Wt% Wt%

A PAA AP30 0.015 Glycerol 82 15.24 2.73
B PAA AP30 0.015 Glycerol 90 8.31 1.66
C PAA AP30 0.015 Wheat syrup 85 14.97 —
D PAA AP30 0.025 Wheat syrup 88 11.96 —
E PAA AP30 0.0396 Wheat syrup 93 6.94 —
XG XG Keltrol 0.02 Wheat syrup 92 7.96 —

Table 1. Test fluid compositions.

manipulated in order to obtain a range of fluids with a constant relaxation time at
low shear rates and an elasticity number spanning several orders of magnitude. The
fluids and their compositions are given in table 1 and were made using a similar
method to that described in Part 1. Sodium azide (NaN3) was used at a concentration
of 0.02 wt% for all solutions, to act as a biocide.

2.3. Rheology

The rheological measurements consisted of characterizing the steady state shear
and dynamic properties using rheometers with a cone-and-plate configuration, and
extensional properties using an opposed jet apparatus and a filament stretching device.
The cone and plate instruments included a Weissenberg R19 rheogiometer with a 7 cm
cone and 2.4◦ cone angle and a Weissenberg R20 rheogiometer with 5 cm cone and 2◦
cone angle which were operated in temperature-controlled rooms. The Weissenberg
rheogiometers are constant-shear-rate devices and were used to measure the viscosity,
primary normal stress difference and dynamic properties (loss and storage moduli).
A Carri-Med CSL 100 constant stress cone and plate rheometer was used with
various cone and plate sizes, and a peltier temperature control, to determine the
viscosity and the dynamic properties of the test fluids. Evaporation of the sample
during rheological measurements was minimized by the application of a thin layer
of an inert silicone oil, of comparable viscosity to the test fluid, to the outer edge
of the sample. Apparent extensional viscosities were measured using a Rheometrics
RFX opposed jet apparatus. The uniaxial extensional viscosity was measured in a
filament stretching device for several of the test fluids by Duc At Nguyen at Monash
University. All the following measurements are presented for 20± 0.25 ◦C.

The rheological properties measured for all the Boger fluids are shown in figures 1
to 5. These properties are summarized in tables 2 and 3 with the aid of the power-law
model to describe the degree of shear thinning for each fluid with a characteristic
relaxation time evaluated using the Maxwell model (Bird, Armstrong & Hassanger
1987a). The steady shear properties for the five polyacrylamide Boger fluids are
presented in figure 1. All the polyacrylamide solutions have a constant viscosity and
the slope for the shear stress (τ)–shear rate (γ̇) curves are all close to unity. At low shear
rates, the primary normal stress difference (N1) curves all show quadratic dependence
on the shear rate such that the primary normal stress coefficient (Ψ1 = N1/γ̇

2)
approaches a plateau, as shown in figure 1(b). Hence, a constant Maxwell relaxation
time for each polyacrylamide Boger fluid can be established at low shear rates which
is subsequently used as the characteristic time of the fluids. The properties given in
table 3 were used for defining the dimensionless numbers governing the flow of elastic
liquids in the torsionally driven cavity. Confined swirling flow experiments were also
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Figure 1. Steady shear properties for polyacrylamide Boger fluids indicating (a) viscosity, and
(b) primary normal stress coefficient.

performed using a slightly shear-thinning polyacrylamide solution, labelled fluid Fst.
The rheology for fluid Fst is detailed in Stokes (1998) and has a zero-shear rate
viscosity of η0 = 1.1 Pa s.

The dynamic properties for the polyacrylamide Boger fluids are shown in figure 2
as twice the storage modulus (2G′). The 2G′ for the Newtonian solvents are all equal,
to within 10%, and are presented in figure 2 as a single line (Stokes 1998). Limitations
of the rheometers, however result in unreliable measurements for fluid A where the
storage modulus is similar to that of the solvents. 2G′ is used as the ordinate because
simple fluid theory stipulates that (Bird et al. 1987a),

lim
γ̇→0

N1 → lim
ω→0

2G′.

The extensional properties measured using the opposed jet apparatus for each
polyacrylamide Boger fluid are shown in figure 3 as an apparent Trouton ratio
(Tr = ηe/η). As mentioned in Part 1, the opposed jet rheometer only approximates an
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Figure 2. Dynamic property for polyacrylamide Boger fluids displayed as twice the storage
modulus.
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Figure 3. Extensional properties of the polyacrylamide Boger fluids as indicated by the Trouton
ratio using the opposed jet rheometer and the filament stretching device (dotted symbols).
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Figure 4. Uniaxial extensional stress growth indicated by the transient Trouton ratio as a function
of strain for (a) polyacrylamide Boger fluid C and (b) polyacrylamide Boger fluid E, measured using
the filament stretching device.

extensional flow field, so the results must be treated with some caution. Measurements
from the opposed jet show that the polyacrylamide Boger fluids are strain-rate
thickening with the maximum Trouton ratio measurable being only Tr ≈ 100. Also
shown in figure 3 is the Trouton ratio at steady state for polyacrylamide Boger fluids C
and E measured using the filament-stretching device and indicated by dotted symbols.
The steady-state extensional viscosity is obtained at high strains from figure 4 which
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Figure 5. Rheological properties of the xanthan gum Boger fluid including (a) steady shear
and extensional measurements, (b) small-amplitude oscillatory measurements, and (c) uniaxial
extensional growth shown as a transient Trouton ratio.

η0 ηS K Ψ1,0

Fluid (Pa s) (Pa s) (Pa sn) n (Pa s2)

A 0.15 0.12 0.135 0.981 0.0029
B 0.43 0.33 0.420 0.973 0.0224
C 1.5 1.13 1.442 0.977 0.6
D 3 1.2 2.82 0.947 2.16
E 23 10.4 19.7 0.949 160
XG 17 7.4 10.5 0.90 7.9γ̇−0.5

Table 2. Zero shear rate viscosity, solvent viscosity, power law parameters and zero shear rate
primary normal stress coefficient for test fluids. Power law parameters are defined such that
η = Kγ̇n−1.
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η ρ λM
Fluid (Pa s) (Kg m−3) (s) El

A 0.146 1232 0.01 0.24× 10−3

B 0.40 1247 0.028 1.8× 10−3

C 1.5 1348 0.2 45× 10−3

D 3 1380 0.36 0.16
E 23 1380 3.5 12
XG 17 1380 3.95γ̇−1.5 0.58γ̇−1.5

Table 3. Material properties used in defining the governing dimensionless numbers in the
torsionally driven cavity for each test fluid. El is evaluated with R = 0.07 m.

shows the transient Trouton ratio (Tr+) as a function of strain (ε = ε̇t) for fluids C
and E. The filament-stretching device generates a true uniaxial flow field, and figure 4
shows the growth of the Trouton ratio with strain to constant steady-state values of
Tr ≈ 2000 and Tr ≈ 4250 for fluids C and E, respectively. Within a narrow range of
strain rates, 1 s−1 < ε̇ < 20 s−1, these steady-state values are essentially independent
of strain rate. The Trouton ratio at low strains for fluids C and E is above what has
been typically observed for other Boger fluids where the Trouton ratio is observed
to gradually rise with strain rate from a value of Tr ≈ 3 (Tirtaatmadja & Sridhar
1993). This anomaly is a result of the low viscosity of the fluids compared with
those previously used in the filament-stretching device, and is probably the result of
surface tension and end effects which are significant at the onset of the stretching
experiment. Also, at low strains, the aspect ratio of the sample is less than one, which
can also cause slightly higher than expected measurements. Another possible source
of error includes evaporation of the sample and crystallization of the wheat syrup,
causing the formation of a ‘skin’ on the surface. However, for high strains and when
the extensional viscosity is large, all these effects become negligible, so the steady
value reached at high strains is considered a reliable measurement of the extensional
viscosity. The opposed-jet device measured lower Trouton ratios owing to the low
strain in the flow which is of the order of one (ε = O[1]), so that the molecules had
not reached their fully extended state.

The rheological properties for the xanthan gum Boger fluid are presented in figure
5. The viscosity is slightly shear thinning with a power-law exponent of 0.9 and a
zero shear viscosity about a factor of two above the solvent viscosity. The slope of
the normal stress curve is very different from that for polyacrylamide solutions. The
primary normal stress difference depends on γ̇1/2, which is similar to that expected
for dilute solutions of rigid rod-like molecules where N1 is predicted to vary with γ̇2/3

(Bird et al. 1987a). The extensional viscosity is measured to be constant with strain
rate and of similar magnitude using both the opposed-jet rheometer and filament-
stretching device. The constant values result as the rigid macromolecules fully align
along the flow field for all strain rates.

The dynamic properties for xanthan gum are presented in figure 5(b) in terms
of the dynamic viscosity (η′), the storage modulus (G′) and loss modulus (G′′). The
dynamic viscosity is shown to be relatively constant and the storage modulus varies
with ω0.57 in a similar fashion to the dependence of N1 on shear rate. The extensional
stress growth is shown in figure 5(c) where the transient Trouton ratio fluctuates
about a constant value with strain for all extension rates examined as the rigid
macromolecules ‘instantaneously’ align with the extensional flow field on start up.
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Material
properties Fluid A Fluid B Fluid C Fluid D Fluid E

ηs 0.12 0.33 1.13 1.2 10.4
ηρ 0.026 0.07 0.37 1.8 12.6
λp 0.06 0.16 0.81 0.6 6.39

FENE-P
B 250 860 800 4300∗ 60 350 3700∗

Giesekus
α 0.014 0.0006 5.97× 10−4 0.00025∗ 0.01 0.0025 0.00026∗

KBKZ
α — — 3000 — 4000
β — — 0.021 — 0.033

Table 4. Material properties for the polyacrylamide Boger fluids using the Oldroyd-B, FENE-P,
Giesekus and KBKZ constitutive models for a single relaxation mode. ∗ indicates that the parameter
was determined from the steady-state extensional viscosity. ηi And λi have the units of (Pa s) and
(s), respectively.

2.4. Constitutive model parameters

To be able to predict the behaviour of viscoelastic fluids in the torsionally driven cav-
ity, the rheology of the fluids used must be described by non-Newtonian constitutive
equations. The material properties for the polyacrylamide Boger fluids were predicted
using the following constitutive models: Oldroyd-B (Oldroyd 1950), FENE-P (Peterlin
1966; Warner 1972; Bird, Dotson & Johnson 1980), Giesekus (Giesekus 1982, 1983;
Bird & Weist 1985) and KBKZ (Kaye 1962; Bernstien, Kearsley & Zapas 1963;
Papanastasiou, Scriven & Macosko 1983). Details on these models may be found in
Stokes (1998) and throughout the literature (Bird et al. 1987a, b; Byars, Binnington
& Boger 1997; Tirtaatmadja 1993; Tirtaatmadja & Sridhar 1995). The predictions
of the rheological measurements using these models are beyond the scope of this
publication. Stokes (1998) may be referred to for details on the model parameters for
both single and multiple relaxation modes, and also for comparison with rheological
measurements. Table 4 is included to show the model parameters for a single relax-
ation mode for the aforementioned models. These parameters were chosen to best
fit the rheological data available in both shear and extension of the polyacrylamide
Boger fluids. Therefore, the fluids used in this study have been described by several
constitutive models which can then be used for predicting the flow behaviour of these
fluids in the torsionally driven cavity.

The validity of the single mode rigid dumbbell model of Bird et al. (1987b)
is investigated using the xanthan gum Boger fluid properties. The rigid dumbbell
model is found to describe the dynamic properties of the fluid poorly, but a similar
dependency on shear rate for the primary normal stress difference measurements is
predicted (see Stokes 1998). The model also predicts a constant extensional viscosity
equal to 430 Pa s which is within 20% of the measured value. The rigid dumbbell
relaxation time (λD = 102 s) is calculated in the same manner as in Part 1. Therefore,
in an extension dominated flow field, it is expected that this model may prove to
be a suitable choice for describing rigid macromolecules. Further investigations are
required, however, to choose the most appropriate model to describe the rigid xanthan
gum Boger fluids in the torsionally driven cavity.
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3. Results and discussion
Presentation and discussion of the experimental results are split into three sections.

The first section examines the secondary flow behaviour using flexible polyacrylamide
Boger fluids A and B which have low elasticity numbers of 0.0002 and 0.002,
respectively, such that the flow is dominated by inertial forces. The second section
examines the secondary flow field using polyacrylamide Boger fluids C, D and E
which have medium to high elasticity numbers of 0.05, 0.16 and 12, respectively, such
that elastic and viscous forces become increasingly more dominant. The third section
examines the flow field for one highly viscous semi-rigid xanthan gum Boger fluid.
The relaxation time for the xanthan gum fluid decreases with increasing shear rate
such that the elasticity number varies from El ≈ 1 to as high as El ≈ 130 for the
range of flow fields examined.

Terminology which is used to describe the secondary flow kinematics are ‘New-
tonian-like’ or inertial flow vortex and ‘reverse’ or ‘elastic’ flow vortex as shown in
figure 1 of Part 1. ‘Newtonian-like’ flow is when the fluid moves radially outwards
along the rotating lid as dictated by centrifugal forces, up the sidewalls and down the
central axis. Any vortex rotating in the same direction as the ‘Newtonian-like’ flow is
termed an inertial vortex. The secondary flow where the fluid moves radially inwards
is termed ‘reverse’ or ‘elastic’ flow because the vortex is rotating in the opposite
direction to that for a Newtonian fluid.

3.1. Elastic effects in an inertia dominated flow of flexible polymer Boger fluids

The confined swirling flow of two Boger fluids, polyacrylamide fluids A and B, which
have very low elasticity numbers of 0.0002 and 0.002, respectively, is dominated by
inertial forces. Contrary to the low-viscosity Boger fluids used in Part 1, however,
polyacrylamide fluids A and B are viscous and elastic enough such that steady
shear elastic properties (i.e. N1) are measurable. As will be described in the following,
‘Newtonian-like’ flow is observed for both fluids A and B but at a critical combination
of Reynolds number and Weissenberg number (or elasticity number), the flow field is
dramatically disrupted owing to the influence of elasticity such that the flow becomes
unsteady.

Steady ‘Newtonian-like’ flow is observed at aspect ratios of 1 6 H/R 6 2 for
polyacrylamide fluid A at Reynolds numbers of Re < 300 (We < 0.07). The secondary
flow regime for polyacrylamide fluid A becomes asymmetric for Re > 300 (We > 0.07)
with one half of the circulating ‘Newtonian-like’ vortex smaller than the other half.
At Re ≈ 380 (We ≈ 0.09), an instability with a non-discernible period occurs near
the middle of the rotating disk. The instability takes one to two minutes to form after
starting the rotation of the disk from rest and an interpretation of the kinematics
is given in figure 6. The instability occurs over a number of seconds and follows a
sequence in time where the flow is initially ‘Newtonian-like’ (figure 6a). A stagnant
zone then forms abruptly in the region near the centre of the rotating disk causing
waviness in the secondary flow regime and spiralling of the vortex core (figure 6b).
Part of the fluid then travels upwards from the centre of the disk giving rise to a small
recirculation zone (figure 6c). The sequence then reverses such that the flow becomes
stagnant near the centre of the disk and ‘Newtonian-like’ secondary flow reoccurs.
The flow field becomes highly irregular as the Reynolds number is increased. The
instability is difficult to visualize because the fluorescent dye used in flow-visualization
experiments disperses quickly owing to the low viscosity of the fluid and the unsteady
flow behaviour. It is therefore difficult to examine the full characteristics of the
instability, and further work is needed to characterize this feature in detail.
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Figure 6. Representation of the unstable secondary flow field for polyacrylamide fluid A at
Re > 378, We > 0.089 and H/R = 2 showing the cyclic transformation with time including (a)
‘Newtonian-like’ flow, (b) stagnation region near r ≈ 0, and (c) region of ‘reverse’ flow.

PIV is used to obtain instantaneous radial and axial velocity profiles at Reynolds
numbers before and after the occurrence of the unsteady flow field for fluid A.
Figures 7 and 8 show the differences in the flow field in a steady state at Re = 216
(We = 0.05) and an unsteady state at Re = 378 (We = 0.089), respectively, using
sectional streamline patterns and a contour plot of the azimuthal component of
vorticity. Figure 7 illustrates the highly symmetrical and ‘Newtonian-like’ nature
of the steady flow field, whereas figure 8 illustrates an asymmetrical vortex. The
azimuthal vorticity consists of two cores of vorticity with opposite sign for the steady
flow case in figure 7(b). However, when the flow is unsteady, as in figure 8(b), there
is an additional core of vorticity on the left-hand side of opposite sign to the main
vortex. This negative azimuthal vorticity is created as a result of the asymmetry in
the flow and is essentially an extension of the right-hand side vortex.

The axial velocity along the centreline (−5 mm < r < 5 mm) is shown in figure 9
for polyacrylamide fluid A and compared to the velocity distributions for Newtonian
fluids at similar Reynolds numbers. The axial velocity profiles for the Newtonian
fluid are obtained through numerical simulation using the Navier–Stokes equations
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(Brydon & Thompson 1998; Brydon personal communication 1998). The Newtonian
profiles show a slight decrease in the minimum axial velocity peak with increase in
Reynolds number with the minimum occurring at increasing values of the cylinder
aspect ratio. However, the peak axial velocity distribution for polyacrylamide fluid
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Figure 7. Particle image velocimetry results in the secondary flow plane for polyacrylamide fluid A
showing steady ‘Newtonian-like’ flow at Re = 216, We = 0.05 and H/R = 2 indicating (a) vector
field, (b) sectional streamline patterns, and (c) azimuthal vorticity contours.

A does not follow the same progression as the Newtonian fluid. The minimum
velocity occurs essentially at a constant value of aspect ratio (0.35 < H/R < 0.5) and
the minimum velocity initially decreases in value with increasing Reynolds number,
and then increases in value. The lowest peak axial velocity measured for the results
presented in figure 9 is for a Reynolds number of Re = 280 (We = 0.065), above which
the minimum velocity increases. Asymmetry in the flow is detected at a Reynolds
number of Re = 300 which is at the same point as the minimum velocity increase.
Although an asymmetry is present for Re > 300, and a flow instability occurs at
Re = 380, the velocity distributions shown in figure 9 represent a combination of
two to four PIV images resulting in a 5–10% variation in the measurements owing
to the transient nature of the flow. In the case of Re = 570, the peak axial velocity
is approximately 25% lower in magnitude than for the Newtonian case at a similar
Reynolds number. These results are also consistent with those in Part 1 where a
reduction in the magnitude of the axial velocity minimum results, owing to the
influence of elasticity at high Reynolds numbers for low-viscosity Boger fluids. The
increase in minimum axial velocity at Re > 300 is due to increased effects of fluid
elasticity and also associated with the occurrence of the instability at Re = 380.

Axisymmetric vortex breakdown is not observed for polyacrylamide fluid A for
Reynolds numbers as high as Re ≈ 3000. This is expected, considering breakdown
was suppressed when using 75 p.p.m. polyacrylamide, as described in Part 1. Fluid A
is also susceptible to severe degradation at high rotation rates when Re > 1000. The
degraded fluid is replaced with fresh fluid when this occurred. It is also noted that
when the rotating lid is continually operated for over about an hour at moderate
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Figure 8 (a, b). For caption see facing page.

rotation rates (200 < Re < 600), the critical Reynolds number for the instability
increases from Re = 380 to as high as Re ≈ 550 in some cases. The temperature of
the fluid did not change significantly and, hence, this apparent increase in critical
Reynolds number is not associated with viscous heating. However, when the rotation
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Figure 8. Particle image velocimetry results in secondary flow plane for polyacrylamide fluid A
for the onset of unsteady flow at Re = 378, We = 0.089 and H/R = 2 indicating (a) vector field,
(b) sectional streamline patterns, and (c) azimuthal vorticity contours.

is stopped and the fluid remains still for several hours, the critical Reynolds number
for the instability is once again initially found to be about Re = 400. Hence, this
indicated that the fluid had not degraded and at present the mechanism for this
phenomenon is unclear.

The secondary flow for polyacrylamide fluid B, which had an elasticity number of
El = 0.002 (an order of magnitude above that for fluid A), is steady and ‘Newtonian-
like’ at Reynolds numbers of Re < 78 (We < 0.14), as shown in figure 10(a). The
transformation to an unsteady flow state and a complex flow field took place at
Re = 78 with the resulting flow field illustrated in figure 10(b) with a dye flow-
visualization image presented in figure 10(c). When the disk rotation rate is increased
to the critical value for the unsteady flow field, ‘Newtonian-like’ flow is initially
observed. After one to two minutes, the fluid in the top half of the cylinder becomes
stagnant before a jet of fluid travels upwards from the centre of the rotating disk.
This jet of fluid becomes a slow spiralling vortex travelling upwards from the central
region of the disk. The initial ‘Newtonian-like’ vortex is reduced in size to 25–50% of
the cylinder height and is situated in the lower half of the cylinder near the edge of
the rotating disk. The flow in the top half of the cylinder is in the ‘reverse’ direction
and driven by elastic effects. A small ring vortex near the centre of the disk is also
apparent and flows in the inertial direction. The overall flow field after several minutes
resembles the illustration shown in figure 10(b) with a dye streak-line image presented
in figure 10(c).

The highly complex flow field restricted velocity measurements for polyacrylamide
fluid B to steady and ‘Newtonian-like’ conditions. Axial velocity measurements along
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Figure 9. Dimensionless axial velocity profiles along the central axis (r ≈ 0) for polyacrylamide
fluid A at H/R = 2. Also shown is the predicted axial velocity profiles for a Newtonian fluid
(Brydon personal communication 1998).

the central axis are presented in figure 11 for fluid B with a comparison to the
velocity predicted for Newtonian fluids (Brydon personal communication 1998). The
minimum in axial velocity for fluid B is about 20% smaller in magnitude than for
Newtonian fluids, but the peak velocity occurs at essentially the same aspect ratio.

The results at this stage, using low-viscosity (Part 1) and medium-viscosity Boger
fluids (polyacrylamide fluids A and B), suggest that, even in inertia-dominated flows,
elasticity can have a large affect on the flow kinematics. For low values of elasticity
number (El < 0.002), the effect of elasticity is to decrease the secondary flow cir-
culation initially. The flow fields for the polyacrylamide fluids A and B, which are
flexible polymer Boger fluids, are initially Newtonian-like at low Reynolds numbers,
but become highly unsteady when the rotation rate of the disk is increased, such that
a critical combination for the Reynolds and Weissenberg (or elasticity) numbers is
reached. From this initial work, the unsteady flow fields produced are thought to be
a direct result of fluid elasticity and/or due to the competition between inertia and
elastic forces.

3.2. Elasticity dominated flow of flexible polymer Boger fluids

The confined swirling flow of elastic fluids where inertia is less dominant and the flow
is governed primarily by viscous and elastic forces, is examined using polyacrylamide
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Figure 10. Representation of secondary flow field for polyacrylamide Boger fluid B indicating
(a) ‘Newtonian-like’ flow at Re ≈ 77, We ≈ 0.15, (b) unsteady flow at Re = 83, We = 0.17 and
(c) flow-visualization video image of instability for H/R = 1 at Re = 83, We = 0.17.

fluids C, D and E with elasticity numbers of El = 0.05, 0.17 and 10, respectively. In
what follows, elasticity is observed to dominate the flow for all three Boger fluids
such that the secondary flow is radially inwards along the rotating lid and against the
centrifugal force. Once a critical combination of Reynolds number and Weissenberg
number (or elasticity number) is reached, it will be shown that a three-dimensional
instability is created and the flow becomes highly unsteady. The various secondary
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Figure 11. Dimensionless axial velocity along the central axis (r ≈ 0) for polyacrylamide fluid B
for H/R = 2.0. Also shown is the predicted axial velocity profiles for a Newtonian fluid (Brydon
personal communication 1998).

flow states of fluid C are initially examined using streak photographs and pictorial
illustrations. Fluorescent dye flow-visualization images of fluid D are then used to
illustrate the instability, which is similar for all three high-viscosity Boger fluids.
Velocity fields obtained using PIV for polyacrylamide fluids C and E with the axial
velocity along the centreline are also used to examine the effect of the instability on
the secondary-flow circulation rates.

Streak photographs and a pictorial representation of the secondary flow for the
transition between different flow structures of polyacrylamide fluid C at an aspect
ratio of H/R = 2 are shown in figure 12. The secondary flow for polyacrylamide
fluid C at low Reynolds numbers (Re < 1.88, We < 0.085) is in the ‘reverse’ direction
where elastic forces dominate (figure 12a). ‘Reverse’ flow is caused by the uneven
normal stresses (τrr τ00 τzz) induced in the fluid near the rotating lid. These normal
stresses create a tension along the primary flow streamlines with a resultant force
directed radially inwards and opposite to centrifugal forces. When the normal stresses
are large, as in the case of fluids C, D and E, the fluid is driven radially inwards
in the opposite direction to that for a Newtonian fluid. An increase in rotation rate
(Re = 6.2, We = 0.28) for fluid C produces a weakly driven ring vortex on the centre
of the disk which flows in the inertial direction (figure 12b). A spiral instability is
produced at Re = 6.9 (We = 0.31) where the core vortex spirals with the primary
motion of fluid and the secondary flow field takes on a wavy appearance (figure 12c).
The counter-rotating vortex on the centre of the disk then disappears with further
increases in rotation rate (Re = 11, We = 0.5) and the flow becomes highly unsteady
(figure 12d).

Flow visualization images using fluorescent dye to show the elasticity driven ‘reverse’
flow and the spiral instability are presented in figure 13 using polyacrylamide fluid D
with t = 0 corresponding to the start-up of the rotating disk. The images presented
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Figure 12. Streak photographs and corresponding pictorial representation of secondary flow field
for the elasticity dominated flow of polyacrylamide fluid C at H/R = 2 indicating (a) ‘reverse’ flow
at Re = 1.88, We = 0.085, (b) central ring vortex at Re = 6.15, We = 0.28, (c) instability and central
ring vortex at Re = 6.9, We = 0.31, and (d) instability at Re = 11, We = 0.5.

are for an aspect ratio of H/R = 1.8, while images at an aspect ratio of H/R = 1 can
be found in Stokes et al. (1995) and Stokes (1998). The flow kinematics are similar to
those observed for fluid C except that a counter-rotating ring vortex on the centre of
the disk is not observed under steady-flow conditions for fluid D. Figure 13(a) shows
the ‘reverse’ secondary flow of fluorescent dye for Re = 1.97 (We = 0.19). When the
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Figure 13 (a, b). For caption see facing page.
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(c)

t =400 s

t =340 s

(b, contd.)

Figure 13. Dye flow-visualization images for the secondary flow of polyacrylamide fluid D at
H/R = 1.8 indicating (a) ‘reverse’ flow at Re = 0.313, We = 0.03, (b) development of spiral
instability at Re = 0.57, We = 0.054 at the indicated times after start-up, and (c) spiral instability
at Re = 0.913, We = 0.067
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rotation rate is increased such that Re = 3.6 (We = 0.34), the flow becomes unsteady
with the development of a spiral instability shown in figure 13(b) for a sequence in
time. Initially, after about 150 s from the start-up of the rotating disk to the critical
rate, the core of the primary vortex takes on a wavy shape and begins to spiral
near the stationary lid. The wave progressed down towards the rotating lid against
the axial flow direction and the amplitude increases as the core begins to spiral
in a three-dimensional manner with the primary vortex motion (t = 185 s). A small
counter-rotating vortex then forms on the middle of the rotating lid and is driven in
the inertial direction (t = 340 s). Dye is drawn occasionally upwards from the centre
of the disk, despite the presence of the small inertial ring vortex which attempts to
drive the dye in the opposite direction. The counter-rotating vortex disappears with
further increases in Reynolds number as the flow becomes more chaotic (figure 13c).

In all the Boger fluids used in this work, the period of the spiral instability is
not discernible, so that it appeared to behave in a chaotic manner. However, for the
slightly shear-thinning fluid, fluid Fst, a period for the spiralling motion is detectable
which appeared to be dependent on the rotation rate of the disk. Details on the
rheological properties for fluid Fst may be found in Stokes (1998). As shown in figure
13 for polyacrylamide fluid D, the instability appears similar to vortex shedding as
the core vortex spirals around with the primary motion of the fluid. The period (Γ )
for a complete revolution of the core, which also corresponds to the appearance of
three vortices being ‘shed’, for the shear-thinning fluid Fst is given by: Γ ≈ 2.9/Ω.
Other polyacrylamide fluids tested do not appear to have this characteristic and the
mechanisms are currently unclear. However, it does suggest that perhaps there is a
regular period for the ‘shedding’ of vortices for the Boger fluids but further work is
required to examine this characteristic in more detail.

Instantaneous velocity measurements were made using PIV for polyacrylamide
fluid C in the presence of the spiral instability with the resulting vector diagram
and sectional streamline plot shown in figures 14(a) and 14(b) for an aspect ratio
of H/R = 2 at Re = 11.5 (We = 0.52). An axial velocity contour plot is shown in
figure 14(c), indicating a central region where the axial velocity reaches as maximum
of around 21 mm s−1, and the azimuthal component of vorticity is displayed in figure
14(d). These diagrams show asymmetry in the flow field which is due to the presence
of the instability and transient flow behaviour. The vorticity diagram in figure 14(d)
shows an area of positive azimuthal vorticity on the left-hand side of the flow field
which is otherwise dominated by negative azimuthal vorticity. The area of near zero
vorticity along the central axis, and bounded by positive and negative azimuthal
vorticity, may be regarded as the core vortex which is spiralling from the centre of the
rotating disk. The core vortex is, therefore, shown in this case to be situated to the
left-hand side of the flow cell for z ≈ 100 mm such that there is an area of positive
vorticity above the core region in the left-side of figure 14(d). Figure 14(e) shows the
instantaneous azimuthal vorticity contour plot for an aspect ratio of H/R = 1, also
for the case of when a spiral instability was present. The core region of near zero
vorticity is slightly wavy, but only vorticity of the same sign is found in each half of
the figure in this case.

The spiral instability is also found to occur for polyacrylamide fluid E, which is the
most viscous and elastic Boger fluid used in this work, for Reynolds numbers much
less than unity such that inertia is completely negligible. ‘Reverse’ flow is observed at
very low Reynolds numbers until the instability occurs at Re = 0.088 (We = 0.82)
with a small counter-rotating ring vortex on the centre of the disk similar to that
observed for fluid D in figure 13(b). However, the ring vortex disappears over an



Swirling flow of viscoelastic fluids. Part 2 139

extended period of time for fluid E (t ≈ 30 min). Figure 15 shows an instantaneous
vector map in the presence of the spiral instability with contour diagrams of the axial
velocity and azimuthal vorticity. In contrast to the axial velocity counter plot for fluid
C in figure 14(c), the areas of maximum axial velocity are no longer found along the
central axis but are found on either side of the vertical axis for fluid E, as shown in
figure 15(b) at r ≈ ± 15 mm. The azimuthal vorticity contour plot for fluid E in figure
15(c) is also different from those found for fluid C in figures 14(a) and 14(e). Five
cores of negative azimuthal vorticity are observed in figure 15(c) with two of these
cores situated on the right-hand side of the flow cell which is otherwise dominated
by large areas of positive vorticity. The contours of azimuthal vorticity on both the
left- and right-hand sides of figure 15(c) are essentially mirrors of each other, except
that they are of opposite sign.

The axial velocity along the centreline (−5 mm < r < 5 mm) for polyacrylamide
fluid C at two aspect ratios, H/R = 1 and H/R = 2, is shown in figure 16. Each
Reynolds number shown corresponds to the images presented in figure 12. The
velocity distributions shown for Re > 7.5 were obtained by averaging the velocity
distributions from 3 to 5 PIV images at different pulse separation times from the
transient flow field. From this data, the axial velocity is found to fluctuate by as
much as ±50% from the mean velocity. At low Reynolds numbers where only steady
‘reverse’ flow is present (Re 6 6.0,We 6 0.27), the axial velocity reaches a maximum
of VZ/2πRΩ ≈ 0.012. When the flow becomes unsteady with a small increase in
Reynolds number to Re = 7.5 (We = 0.34), there is an increase in the maximum
velocity by more than 400%, indicating that the secondary flow increases significantly
in strength as a result of the instability. The maximum axial velocity only increases
slightly more for an increase in Reynolds number to Re = 11.5 (We = 0.52) when
H/R = 1, as shown in figure 16(a), but increases by 200% for H/R = 2 to a
maximum of VZ/2πRΩ ≈ 0.1, as shown in figure 16(b). The maximum axial velocity
along the centreline in this case is 10% of the maximum azimuthal velocity at the
edge of the rotating disk and is of the same order of magnitude as that observed
for the high-Reynolds-number flow (Re > 100) of Newtonian fluids, but of opposite
sign. The flow in the presence of the instability may be classed as quite strong and
the unsteady nature of the flow indicates good mixing capabilities. The stationary
wall suppresses the peak velocity at low aspect ratios and hence a 170% greater peak
axial velocity is observed for H/R = 2 than for H/R = 1 at Re = 11.5.

The centreline axial velocity for polyacrylamide fluid E is presented in figure 17 for
H/R = 1. Steady ‘reverse’ flow is observed for Re = 0.044 (We = 0.41) with a peak
axial velocity of VZ/2πRΩ ≈ 0.034 which is 280% larger than the peak axial velocity
for the reverse flow of fluid C owing to the higher elasticity of fluid E. However, a 170%
increase in peak axial velocity is observed for fluid E when the Reynolds number is
increased to that required for the spiral instability at Re = 0.089 (We = 0.82). Further
increases in Reynolds number to Re = 0.35 (We = 3.2) for fluid E in figure 17 results
in an increase in peak axial velocity to VZ/2πRΩ ≈ 0.108.

The previous results have, therefore, shown that in the elasticity dominated flow
of polyacrylamide Boger fluids, normal stress effects drive the fluid in the opposite
direction to that in which the inertial forces act such that the flow is moving inwards
along the rotating lid. A small counter-rotating ring vortex driven in the inertial
direction forms on the centre of the rotating lid with Reynolds numbers being well
below one in some cases. The formation of a central ring vortex is not unexpected,
however, since it is qualitatively predicted theoretically by Kramer & Johnson (1972),
Nirschl & Stewart (1984) and Signer (1991) for constant viscosity fluids with moderate



140 J. R. Stokes, L. J. W. Graham, N. J. Lawson and D. V. Boger

140

120

100

80

60

40

20

0
–50 0 50

20 mm s–1

z (mm)

(a)

140

120

100

80

60

40

20

0
–50 0 50

z (mm)

(b)

r (mm)

Figure 14 (a, b). For caption see facing page.

amounts of elasticity. This is contrary to the experimental observations of Hill (1972)
where an inertially driven ring vortex forms on the outside of the rotating lid
and is associated with the action of shear thinning. Beyond a critical combination
of Reynolds and Weissenberg (or elasticity) numbers, the core vortex is shown to
become a three-dimensional spiral and the flow is highly unsteady with a substantially
increased secondary-flow circulation rate.

3.3. Elasticity dominated flow of a semi-rigid polymer Boger fluid

The following will illustrate the confined swirling flow of a xanthan gum Boger
fluid when inertial forces are small. Xanthan gum has a semi-rigid conformation
in solution and has substantially different rheological properties compared to the
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Figure 14. Particle image velocimetry results in secondary flow plane for polyacrylamide fluid C in
the presence of an instability at Re = 11.5, We = 0.52, and H/R = 2.0 indicating (a) vector field,
(b) sectional streamline patterns, (c) axial velocity contour plot, (d) azimuthal vorticity contour plot,
and (e) azimuthal vorticity contour plot for H/R = 1.
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Figure 15. Particle image velocimetry results in secondary flow plane for polyacrylamide fluid E in
the presence of an instability at Re = 0.088, We = 0.88 and H/R = 1.0 indicating (a) vector field,
(b) axial velocity contour plot, (c) azimuthal vorticity contour plot.

flexible polyacrylamide solutions used in the previous two sections. The following
results show that the flow kinematics for the xanthan gum solution are also quite
different to those for the polyacrylamide solution as a result of the differences in
rheology. The relaxation time for the xanthan gum Boger fluid also decreases with
increasing rotation rate (or shear rate) and, hence, the Weissenberg and elasticity
numbers correspondingly decrease as the Reynolds number is raised. However, in all
cases for the xanthan gum Boger fluid, Re < 1.3 and El > 0.8, indicating that it is
expected that elasticity dominates over the inertial forces. The following results show
that elastic driven ‘reverse’ flows are observed at low Reynolds numbers and high
Weissenberg numbers for the xanthan gum Boger fluid. Ring vortices are also observed
on the rotating disk driven in the inertial direction and depend on the cylinder aspect
ratio. Figure 18 and 21 are streak photographs and a pictorial representation for the
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Figure 16. Dimensionless axial velocity along central axis (r ≈ 0) for polyacrylamide fluid C for
(a) H/R = 1.0 and (b) H/R = 2.

secondary flow of the xanthan gum Boger fluid at an aspect ratio of H/R = 1.0 and
H/R = 1.5, respectively, and these results are now discussed in more detail.

At an aspect ratio of H/R = 1, the xanthan gum Boger fluid exhibits elastic
‘reverse’ flow at Reynolds numbers of Re 6 0.25 (We > 4.2) as shown in figure 18(a).
On increasing the Reynolds number to Re = 0.59 (We = 2.8, figure 18b), a small ring
vortex, which is driven in the inertial direction, forms on the outside of the rotating
disk and counter-rotates with the elastic vortex. The ring vortex grows to govern just
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Figure 17. Dimensionless axial velocity along central axis (r ≈ 0) for polyacrylamide fluid E for
H/R = 1.0.

under half of the flow cell at the highest Reynolds number tested (Re = 1.3, We = 2,
figures 18c, 18d). The area near the centre of the disk appears almost stagnant and is
only moving slowly downwards towards the disk at a velocity of approximately 0.1%
of the maximum azimuthal velocity at the edge of the rotating disk.

At the higher aspect ratio of H/R = 1.5, a small weakly flowing ring vortex driven
in the inertial direction forms on the centre of the rotating disk at an Re = 0.12
(We = 5.7, figure 19b). Another small ring vortex also forms on the outside of the
disk at Re = 0.36 (We = 3.5, figure 19c), which is similar to that observed for
H/R = 1. The two vortices combine at Re = 0.48 (We = 3.0, figure 18d) to form
one deformed ring vortex on the disk. A weak instability is also observed near the
stationary disk, shown in figure 19 as a slight asymmetry.

The dimensionless axial velocity along the centreline for the xanthan gum Boger
fluid is shown in figure 20 at each aspect ratio. The dimensionless axial velocity
peak is of equal order of magnitude to that observed for the steady ‘reverse’ flow
of polyacrylamide fluid C. However, as the Reynolds number is increased and the
Weissenberg number decreased, the peak axial velocity decreased. This decrease in
peak velocity is in contrast to the polyacrylamide Boger fluid where the peak axial
velocity is observed to increase with increasing Reynolds number and Weissenberg
number. The slight instability observed for the xanthan gum fluid at H/R = 1.5 has
no noticeable effect on the axial velocity distribution along the central axis, and,
hence, this instability is considered to be weak in nature.

The results have shown that the secondary flows observed for the xanthan gum
Boger fluid are considerably different to those observed for polyacrylamide Boger
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(a)

(b)

(c)

(d )

Figure 18. Streak photographs and pictorial representation of a xanthan gum Bogar fluid for
H/R = 1.0 showing (a) ‘reverse’ flow at Re = 0.25, We = 4.2, (b) small outside ring vortex at
Re = 0.59, We = 2.8, (c) ring vortex at Re = 0.94, We = 2.2, and (d) ring vortex at Re = 1.3,
We = 2.

fluids. Ring vortices are observed on both the outside and in the centre of the
disk, depending on the aspect ratio of the cylinder. The reason for the formation
of a central ring vortex at H/R = 1.5 is thought to be due to the creation of
a low-pressure region in the centre of the disk, and is similar to the ring vortex
observed for the high-viscosity polyacrylamide Boger fluids. The ring vortex observed
on the outside of the disk for the xanthan gum fluid is also thought to be created
by a low-pressure region in the bottom corners of the flow cell in the area of the
singularity between the rotating disk and the stationary wall. Outside ring vortices
were previously observed experimentally by Hill (1972) and Escudier & Cullen (1996)
but are associated with shear thinning, while for the xanthan Boger fluid the viscosity
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(a)

(b)

(c)

(d )

Figure 19. Streak photographs and pictorial representations of a xanthan gum Boger fluid for
H/R = 1.5 showing (a) ‘reverse’ flow at Re = 0.06, We = 8.17, (b) central ring vortex at Re = 0.12,
We = 5.7, (c) outside and central ring vortex at Re = 0.36, We = 3.5, and (d) combined ring vortex
at Re = 0.48, We = 3.0.
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Figure 20. Dimensionless axial velocity along central axis (r ≈ 0) for a xanthan gum Boger fluid
at (a) H/R = 1, and (b) H/R = 1.5.

can only vary by a maximum factor of two and, hence, the viscosity was considered
effectively constant. Therefore, shear thinning in the viscosity does not cause the
outside ring vortex for the swirling flow of xanthan gum. However, it may be related
to the variation in elasticity with shear rate owing to the non-constant relaxation time
and also associated with orientation effects of the rigid macromolecules in the flow
field.
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Figure 21. Stability boundary diagram for the confined swirling flow
of polyacrylamide Boger fluids.

4. Discussion
The presence of small amounts of high molecular weight polymer (25–400 p.p.m.) in

Newtonian solvents has been shown to influence the kinematics of confined swirling
flow dramatically. The swirling flow of Boger fluids with elasticity numbers ranging
across six orders of magnitude in Parts 1 and 2 using both a flexible and semi-
rigid polymer has produced a wealth of flow phenomena owing to the competition
between inertia, viscosity and elasticity. Elasticity, in the form of normal stress
differences, in swirling flow attempts to drive the fluid in the opposite direction to
the inertial centrifugal force that is generated by the rotating device. The normal
stress difference acts as a tension along the curvilinear streamlines of the primary
flow and subsequently causes a radial driving force which acts against centrifugal
force. Hence, as the elasticity number is increased, the secondary flow transformed
from ‘Newtonian-like’, where the flow is governed mainly by inertia, to a state which
is flowing in the opposite direction and is driven by elasticity. A summary for the
various flow phenomena observed for the polyacrylamide Boger fluids is given in
table 5.

The following sections discuss the instabilities which are observed throughout the
range of elastic polyacrylamide fluids, and compare the flow observed for flexible and
semi-rigid polymer Boger fluids. Finally, the application of the results found in this
work is discussed.

4.1. Flow instability

At least three types of flow instability have been observed in the swirling flow of
polyacrylamide Boger fluids. The transitions to each of these instabilities are shown
in figure 21 in terms of the Reynolds number and Weissenberg number, while the
elasticity number is indicated by lines of 45◦. The instabilities depend on the level of
inertia and elasticity present in the flow field.
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PAA fluid El Re We H/R

‘Newtonian-like’ flow

A 0.0002 300 0.06 1, 1.5, 2
B 0.002 83 0.16 1, 1.5, 2

‘Reverse’ flow

C 0.05 1.9 0.086 1, 1.5, 2
D 0.17 2 0.19 1, 1.8
E 10 0.044 0.4 1

Central ring vortex

B 0.002 83 0.17 1, 1.5, 2
C 0.05 6.2 0.28 1, 1.5, 2
D 0.17 3.6 0.34 1, 1.8
E 10 0.088 0.88 1

Instability

A 0.0002 378 0.089 1, 1.5, 2
B 0.002 83 0.17 1, 1.5, 2
C 0.05 6.9 0.31 1, 1.5, 2
D 0.17 3.6 0.61 1, 1.8
E 10 0.088 0.88 1

Table 5. Summary of secondary flow phenomena observed for polyacrylamide Boger fluids.

The inertial instability of vortex breakdown is examined in Part 1 with the existence
domain of the low-viscosity polyacrylamide Boger fluids shown in figure 21 at an
aspect ratio of H/R = 1.5. At low elasticity numbers and high Reynolds numbers,
elasticity is shown to have a weak stabilizing effect on the steady inertial ‘instability’
mode of vortex breakdown. As the Weissenberg or elasticity number is increased by
increasing the concentration of polyacrylamide, vortex breakdown is suppressed and
does not occur for concentrations of 75 p.p.m. polyacrylamide.

The secondary-flow regime for all Boger fluids in Part 2 which contain dilute
concentrations of flexible polyacrylamide is observed to become highly unstable once
a critical combination of Reynolds number and Weissenberg number (or elasticity
number) is reached for any particular fluid. The transition to unsteady behaviour
is represented by a solid line in figure 21 where a clear correlation exists between
the Reynolds number and Weissenberg number (or elasticity number). An additional
data point from Stokes (1998) for a polyacrylamide Boger fluids (fluid F) is also
included in the graph. Agreement to within ±20% of the stability line shown in figure
21 was found for all the medium- and high-viscosity polyacrylamide Boger fluids.
This correlation for the occurrence of unsteady behaviour of the Boger fluids had a
correlation coefficient of r2 = 0.995 and is represented by the following relationship:

Re = 0.66El−0.η . (1)

This relation indicates that for polyacrylamide Boger fluids, the rotation rate required
to cause as instability is a function of the fluid properties and flow geometry.

The elastic instabilities for the medium- and high-viscosity Boger fluids have been
observed across a large range of flow states, and the relationship in equation (1)
suggest that these effects are caused by similar mechanisms for the entire range of
elasticity numbers. The flow kinematics of the various instabilities appear visually
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different, but these differences may be attributed to the degree of inertia in the flow
field. However, there is still clearly the presence of two elastic instability modes. The
first is an inertio-elastic mode which occurs when inertia dominates the subcritical
flow and the instability consists of intermittent flow reversal near the centre of the
rotating disk. The flow reversal is seemingly aperiodic as elastic effects complete with
inertial forces to cause an unsteady flow for polyacrylamide Boger fluids A, B and
F. The second type of flow instability is a purely elastic mode which consists of a
time-dependent spiral vortex which is wound by the primary flow up the centre of the
cylinder. This instability is observed for Boger fluids C, D and E when the subcritical
flow is dominated by elasticity.

The most common feature of all the elastic instabilities is a dramatic increase
in the axial velocity along the central axis. This increase in axial velocity causes
flow reversal for the cases where the subcritical flow is dominated by inertia, whereas
when the subcritical flow is dominated by elasticity the magnitude of the axial velocity
increases. The effects of the various degrees of inertia on the flow kinematics is further
explored in Stokes (1998) where it is shown that the inertio-elastic mode observed
for fluid F undergoes a transition to an elasticity dominated flow with an increase
in rotation rate such that the elastic mode occurs. Stokes (1998) also shows that for
an elastic shear-thinning fluid, the purely elastic instability mode transforms to the
inertio-elastic mode as the Reynolds number is continually raised (Re > 100) and,
hence, inertia increased.

The mechanism leading to instability of the swirling flow owing to the elasticity of
the polyacrylamide fluids may be attributed to the non-Newtonian stress field and/or
the interaction between the elastic and inertial stresses. The correlation in equation(1)
extends down into the region where inertial effects are negligible (Re � 1) which
infers that the purely elastic flow instabilities which are observed in other inertialess
rotating flows are also due to these effects. Such flows include Taylor–Couette and
co-axial disk flows where purely elastic flow instabilities are related to the radial
driving force created by a large first normal stress difference acting along curvilinear
streamlines (Larson 1992; Shaqfeh 1996; McKinley, Pakdel & Öztekin 1996). Joo &
Shaqfeh (1992) also examine the influence of inertia on the viscoelastic instabilities
in Taylor–Coutte flow. They observe an ‘inertio-elastic’ instability mode, using a
linear stability analysis, which may be similar to that observed in this work. Further
theoretical analysis of the instabilities observed in the confined swirling flow geometry
is required to fully understand elastic instabilities which are observed in numerous
situations involving swirl.

4.2. Comparison between flexible and rigid polymers

The differences between flow behaviour of rigid and flexible polymers are reflected
in their different rheological properties. The shear-rate dependence of the primary
normal stress difference for flexible polyacrylamide is quadratic at low shear rates
and linear at high shear rates while semi-rigid xanthan gum has a square-root
dependence. In extensional flow, polyacrylamide is extremely strain thickening while
the extensional viscosity of xanthan gum is essentially constant with strain and strain
rate. Therefore, polyacrylamide is more susceptible to the fluctuations in the rate of
strain and stress gradients throughout the three-dimensional swirling flow field than
xanthan gum. An instability is observed for polyacrylamide which has a substantial
effect on the secondary-flow circulation such that the maximum axial velocity along
the central axis increases markedly to be about 10% of the maximum azimuthal
velocity. However, only a slight instability is observed for the xanthan gum Boger
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fluid which did not have any noticeable effect on the axial velocity distribution. This
instability occurs at Reynolds-number and elasticity-number combinations which are
above the stability boundary in figure 21. An instability is also observed by Escudier
& Cullen (1996) for semi-flexible carboxymethylcellulose at conditions which closely
match the boundary line in figure 21. However, this instability is not as dominant
on the secondary flow as that for polyacrylamide. The instantaneous state of stress
is a function of the history of deformation and the magnitude of deformation for
viscoelastic fluids (Larson 1992). Hence, the strong dependence of the viscoelastic
material functions on the rate-of-strain for polyacrylamide compared to xanthan
gum, will mean it is more susceptible to temporal variations in local fluid stress or
straining motions and, therefore, more likely to become unstable.

4.3. Applications

The investigation into confined swirling flow of non-Newtonian fluids is highly
relevant to process industries where swirling flows are used. Figure 21 shows that it
is possible to obtain a highly unsteady flow for very viscous and elastic fluids at very
low Reynolds numbers (Re < 1) which is favourable in any mixing process involving
swirl. It would be expected that any fluid with rheological properties comparable
to polyacrylamide will behave in a similar manner and, hence, the confined swirling
apparatus may be a useful mixing device.

The numerical prediction of the flow behaviour of elastic fluids in complex mix-
ing geometries is ultimately desirable for many engineering applications. However,
numerical codes and constitutive equations must be established and validated with
well-characterized experimental information, now presented in this paper. Constant-
viscosity elastic fluids were used to separate effects associated with elasticity from
shear thinning, and situations were investigated where inertia is both dominant and
negligible to enable prediction across a broad spectrum of circumstances. Several ob-
servations include instabilities of a time-periodic and three-dimensional nature which
would be difficult to predict accurately in a numerical model. However, it will now
be easier to control and understand the influence of elasticity on the axis-symmetric
vortex breakdown in inertia-dominated flows. The prediction of steady ‘reverse’ flow,
counter-rotating ring vortices on the rotating lid, and the influence of elasticity on
axis-symmetric vortex breakdown should provide highly beneficial data for numerical
prediction before solving the unsteady flows of viscoelastic fluids.

5. Conclusion
In the confined swirling flow of constant-viscosity elastic fluids dilute concentrations

of flexible polyacrylamide or semi-rigid xanthan gum, the secondary-flow regime is
dramatically altered owing to the influence of fluid elasticity. Normal stresses acting
as a tension along the curvilinear primary-flow streamlines cause an elastic force to
act against the inertial force. As the level of elasticity is increased by using a series
of flexible polymer solutions, the flow transforms from being the ‘Newtonian-like’,
where the secondary motion is directed radially outwards along the rotating lid, to
being elasticity driven, where the secondary motion is in the opposite direction to that
for Newtonian fluids. Several complex secondary-flow patterns are observed which
depend on the level of elasticity and inertia, the polymer type and conformation,
and the cylinder aspect ratio. In Part 1, the well-known inertial vortex breakdown
instability is shown to be stabilized through weak elastic effects, whereas in Part 2
elasticity is shown to cause a new elastic time-dependent instability which is slightly
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destabilized by inertial effects. A correlation between the critical Reynolds number
and elasticity number (or Weissenberg number) for the elastic instability has been
found for the polyacrylamide Boger fluids which is valid in circumstances when
inertia is either dominant or negligible. Material parameters in single mode and
multi-mode Oldroyd-B, FENE-P, Giesekus and KBKZ constitutive models have been
used to describe the rheology for the polyacrylamide Boger fluids. The results from
the flow-visualization experiments of the rheologically well-characterized Boger fluids
will enable the validation of numerical predictions in the confined swirling flow as a
test case of non-Newtonian constitutive models.
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